cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245536 Write n>=1 as either n=2^k-2^r with 0 <= r <= k-1, in which case a(2^k-2^r)=k-r-1, or as n=2^k-2^r+j with 2 <= r <= k-1, 1 <= j < 2^r-1, in which case a(2^k-2^r+j)=(k-r-1)*a(j).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 2, 3, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Jul 25 2014

Keywords

Comments

Defined by the recurrence given in A245196, taking G(n)=n (n>=0) and m=1.
Changing G from [0,1,2,3,4,...] to [1,2,3,4,5,6,...] produces A038374.

Crossrefs

Programs

  • Maple
    G:=[seq(n,n=0..30)];
    m:=1;
    f:=proc(n) option remember; global m,G; local k,r,j,np;
       k:=1+floor(log[2](n)); np:=2^k-n;
       if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
       if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi;
    end;
    [seq(f(n),n=1..120)];