cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245548 Number of distinct sum representations of n by Fibonacci numbers with minimal digit sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 3, 1, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 5, 1, 1, 1, 3, 4, 1, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 3, 5, 2, 5, 2, 1, 1, 1, 1, 2, 3, 4, 3, 1, 1, 4, 1, 5
Offset: 1

Views

Author

Patrick Okolo Edeogu, Oct 20 2015

Keywords

Comments

The digits are any nonnegative integers. The value of the minimal sum of digits is given by A007895. The sequence of those numbers where this sequence has value 1 is A256133.

Examples

			a(12) = 3 because 12 = 8 + 3 + 1 = 8 + 2 + 2 = 5 + 5 + 2 has three distinct representations.
		

Crossrefs

Programs

  • Maple
    L:=[1,2,3,5,8,13,21,34,55]; LC:=[1,1,1,2,1,2,1,1,1]:LS:=[1,1,1,2,1,2,2,1,2]: for n from 10 to 88 do: ct:=0: ss:=n: sm:=n: b0:=1: b1:=2: b2:=3: b3:=4: b4:=trunc(n/L[5]): b5:=trunc(n/L[6]): b6:=trunc(n/L[7]):b7:=trunc(n/L[8]):b8:=trunc(n/L[9]):
    > for n0 from 0 to b0 do:for n1 from 0 to b1 do: for n2 from 0 to b2 do:for n3 from 0 to b3 do: for n4 from 0 to b4 do: for n5 from 0 to b5 do: for n6 from 0 to b6 do:
    > for n7 from 0 to b7 do:for n8 from 0 to b8 do: if n=n0*L[1]+n1*L[2]+n2*L[3]+n3*L[4]+n4*L[5]+n5*L[6]+n6*L[7]+n7*L[8]+n8*L[9] then ss:=n0+n1+n2+n3+n4+n5+n6+n7+n8:fi:
    > if sm>ss then sm:=ss: fi: od:od:od:od:od:od:od:od:od:for n0 from 0 to b0 do:for n1 from 0 to b1 do: for n2 from 0 to b2 do:for n3 from 0 to b3 do:
    > for n4 from 0 to b4 do:for n5 from 0 to b5 do:for n6 from 0 to b6 do:
    > for n7 from 0 to b7 do:for n8 from 0 to b8 do:
    > if n=n0*L[1]+n1*L[2]+n2*L[3]+n3*L[4]+n4*L[5]+n5*L[6]+n6*L[7]+n7*L[8]+n8*L[9] then st:=n0+n1+n2+n3+n4+n5+n6+n7+n8: if st=sm then ct:=ct+1: fi:fi: od;od:od:od:od:od:od:od:od: LS:=[op(LS),sm]: LC:=[op(LC),ct]: od: print(LC):