A245559 Triangle read by rows: entries on or below the main diagonal in A245558.
1, 1, 1, 1, 2, 3, 1, 2, 5, 8, 1, 3, 7, 14, 25, 1, 3, 9, 20, 42, 75, 1, 4, 12, 30, 66, 132, 245, 1, 4, 15, 40, 99, 212, 429, 800, 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32065, 1, 6, 30, 112, 364, 1026, 2652, 6288, 13995, 29372, 58786, 112632
Offset: 1
Examples
Triangle begins: 1, 1, 1, 1, 2, 3, 1, 2, 5, 8, 1, 3, 7, 14, 25, 1, 3, 9, 20, 42, 75, 1, 4, 12, 30, 66, 132, 245, 1, 4, 15, 40, 99, 212, 429, 800, 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32065, 1, 6, 30, 112, 364, 1026, 2652, 6288, 13995, 29372, 58786, 112632 ...
Links
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238; MR1691428 (2000c:13006).
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188; MR1719140 (2000j:05009). See p. 174.
- J. E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Z. Krist. 221 (2006) 237-245, eq. (5).
Crossrefs
Cf. A245558.
Programs
-
Maple
A245559 := proc(p,q) local d; a := 0 ; for d from 1 to max(p,q) do if modp(p,d)=0 and modp(q,d)=0 then a := a+numtheory[mobius](d)*(binomial((p+q)/d,p/d)) ; end if ; end do: a/(p+q) ; end proc: seq(seq( A245559(p,q),q=1..p),p=1..12) ; # R. J. Mathar, Apr 15 2024
-
Mathematica
A245559[p_, q_] := Module[{d, a = 0}, For[d = 1, d <= Max[p, q], d++, If[Mod[p, d] == 0 && Mod[q, d] == 0, a = a + MoebiusMu[d]*Binomial[ (p+q)/d, p/d]]]; a/(p+q)]; Table[Table[A245559[p, q], {q, 1, p}], {p, 1, 12}] // Flatten (* Jean-François Alcover, May 17 2024, after R. J. Mathar *)
Comments