This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245563 #25 May 22 2025 10:21:39 %S A245563 0,1,1,2,1,1,1,2,3,1,1,1,1,1,2,1,2,1,2,3,4,1,1,1,1,1,2,1,1,1,1,1,1,2, %T A245563 1,3,1,2,1,2,1,2,2,2,3,1,3,4,5,1,1,1,1,1,2,1,1,1,1,1,1,2,1,3,1,1,1,1, %U A245563 1,1,1,1,1,2,1,1,2,1,1,2,1,3,1,4,1,2,1,2,1,2,2,2,1,2,1,1,2,2,2,3,2,3,1,3,1,3,2,3,4,1,4,5,6,1,1,1,1,1,2,1,1,1,1,1,1,2,1,3,1,1,1,1,1,1,1 %N A245563 Table read by rows: row n gives list of lengths of runs of 1's in binary expansion of n, starting with low-order bits. %C A245563 A formula for A071053(n) depends on this table. %H A245563 Reinhard Zumkeller, <a href="/A245563/b245563.txt">Rows n = 0..1000 of triangle, flattened</a> %H A245563 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A245563 Here are the run lengths for the numbers 0 through 21: %e A245563 0, [] %e A245563 1, [1] %e A245563 2, [1] %e A245563 3, [2] %e A245563 4, [1] %e A245563 5, [1, 1] %e A245563 6, [2] %e A245563 7, [3] %e A245563 8, [1] %e A245563 9, [1, 1] %e A245563 10, [1, 1] %e A245563 11, [2, 1] %e A245563 12, [2] %e A245563 13, [1, 2] %e A245563 14, [3] %e A245563 15, [4] %e A245563 16, [1] %e A245563 17, [1, 1] %e A245563 18, [1, 1] %e A245563 19, [2, 1] %e A245563 20, [1, 1] %e A245563 21, [1, 1, 1] %p A245563 for n from 0 to 128 do %p A245563 lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0; %p A245563 for i from 1 to L1 do %p A245563 if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1; %p A245563 elif out1 = 0 and t1[i] = 1 then c:=c+1; %p A245563 elif out1 = 1 and t1[i] = 0 then c:=c; %p A245563 elif out1 = 0 and t1[i] = 0 then lis:=[op(lis),c]; out1:=1; c:=0; %p A245563 fi; %p A245563 if i = L1 and c>0 then lis:=[op(lis),c]; fi; %p A245563 od: %p A245563 lprint(n,lis); %p A245563 od: %t A245563 Join@@Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,0,100}] (* _Gus Wiseman_, Nov 03 2019 *) %o A245563 (Haskell) %o A245563 import Data.List (group) %o A245563 a245563 n k = a245563_tabf !! n !! k %o A245563 a245563_row n = a245563_tabf !! n %o A245563 a245563_tabf = [0] : map %o A245563 (map length . (filter ((== 1) . head)) . group) (tail a030308_tabf) %o A245563 -- _Reinhard Zumkeller_, Aug 10 2014 %o A245563 (Python) %o A245563 from re import split %o A245563 A245563_list = [0] %o A245563 for n in range(1,100): %o A245563 A245563_list.extend(len(d) for d in split('0+',bin(n)[:1:-1]) if d != '') %o A245563 # _Chai Wah Wu_, Sep 07 2014 %Y A245563 Row sums = A000120 (the binary weight). %Y A245563 Cf. A245562, A071053. %Y A245563 Cf. A030308, A227736. %Y A245563 Row lengths are A069010. %Y A245563 The version for prime indices (instead of binary indices) is A124010. %Y A245563 Numbers with distinct run-lengths are A328592. %Y A245563 Numbers with equal run-lengths are A164707. %Y A245563 Cf. A003714, A014081, A328166, A328594, A328595, A328596. %K A245563 nonn,base,tabf %O A245563 0,4 %A A245563 _N. J. A. Sloane_, Aug 10 2014