A245564 a(n) = Product_{i in row n of A245562} Fibonacci(i+2).
1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 6, 5, 8, 2, 4, 4, 6, 4, 8, 6, 10, 3, 6, 6, 9, 5, 10, 8, 13, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 16, 3, 6, 6, 9, 6, 12, 9, 15, 5, 10, 10, 15, 8, 16, 13, 21, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 16, 4, 8, 8, 12, 8, 16, 12, 20, 6, 12, 12, 18
Offset: 0
Examples
From _Gus Wiseman_, Jul 05 2025: (Start) The binary indices of 11 are {1,2,4}, with sparse subsets {{},{1},{2},{4},{1,4},{2,4}}, so a(11) = 6. The maximal runs of binary indices of 11 are ((1,2),(4)), with lengths (2,1), so a(11) = F(2+2)*F(1+2) = 6. The a(0) = 1 through a(12) = 3 sparse subsets are: 0 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------------ {} {} {} {} {} {} {} {} {} {} {} {} {} {1} {2} {1} {3} {1} {2} {1} {4} {1} {2} {1} {3} {2} {3} {3} {2} {4} {4} {2} {4} {1,3} {3} {1,4} {2,4} {4} {1,3} {1,4} {2,4} The greatest number whose set of binary indices is a member of column n above is A374356(n). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166 [math.CO], 2016.
Crossrefs
Programs
-
Maple
with(combinat); ans:=[]; for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0; for i from 1 to L1 do if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1; elif out1 = 0 and t1[i] = 1 then c:=c+1; elif out1 = 1 and t1[i] = 0 then c:=c; elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0; fi; if i = L1 and c>0 then lis:=[c,op(lis)]; fi; od: a:=mul(fibonacci(i+2), i in lis); ans:=[op(ans),a]; od: ans;
-
Mathematica
a[n_] := Sum[Mod[Binomial[3k, k] Binomial[n, k], 2], {k, 0, n}]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 29 2020, after Chai Wah Wu *) spars[S_]:=Select[Subsets[S],FreeQ[Differences[#],1]&]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[spars[bpe[n]]],{n,0,30}] (* Gus Wiseman, Jul 05 2025 *)
-
PARI
a(n)=my(s=1,k); while(n, n>>=valuation(n,2); k=valuation(n+1,2); s*=fibonacci(k+2); n>>=k); s \\ Charles R Greathouse IV, Oct 21 2016
-
Python
# use RLT function from A278159 from sympy import fibonacci def A245564(n): return RLT(n,lambda m: fibonacci(m+2)) # Chai Wah Wu, Feb 04 2022
Formula
a(n) = Sum_{k=0..n} ({binomial(3k,k)*binomial(n,k)} mod 2). - Chai Wah Wu, Oct 19 2016
Comments