This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245567 #36 Jun 02 2023 01:13:43 %S A245567 2,1,1,5,76,5993,7689745,2414465044600,56130437141763247212112, %T A245567 286386577668298408602599478477358234902247 %N A245567 Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other. %C A245567 This is the number of antichain covers such that the induced partition contains only singletons. The induced partition of {{1,2},{2,3},{1,3},{3,4}} is {{1},{2},{3},{4}}, while the induced partition of {{1,2,3},{2,3,4}} is {{1},{2,3},{4}}. %C A245567 This sequence is related to A006126. See 1st formula. %C A245567 The sequence is also related to Dedekind numbers through Stirling numbers of the second kind. See 2nd formula. %C A245567 Sets of subsets of the described type are said to be T_0. - _Gus Wiseman_, Aug 14 2019 %H A245567 Patrick De Causmaecker and Stefan De Wannemacker, <a href="http://arxiv.org/abs/1407.4288">On the number of antichains of sets in a finite universe</a>, arXiv:1407.4288 [math.CO], 2014. %F A245567 A000372(n) = Sum_{k=0..n} S(n+1,k+1)*a(k). %F A245567 a(n) = A006126(n) - Sum_{k=1..n-1} S(n,k)*a(k). %F A245567 Were n > 0 and S(n,k) is the number of ways to partition a set of n elements into k nonempty subsets. %F A245567 Inverse binomial transform of A326950, if we assume a(0) = 1. - _Gus Wiseman_, Aug 14 2019 %e A245567 For n = 0, a(0) = 2 by the antisets {}, {{}}. %e A245567 For n = 1, a(1) = 1 by the antiset {{1}}. %e A245567 For n = 2, a(2) = 1 by the antiset {{1},{2}}. %e A245567 For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}. %t A245567 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A245567 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A245567 Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* _Gus Wiseman_, Aug 14 2019 *) %o A245567 See http://www.kuleuven-kulak.be/CODeS/codesreports for a runnable jar file. %Y A245567 Cf. A000372 (Dedekind numbers), A006126 (Number of antichain covers of a labeled n-set). %Y A245567 Sequences counting and ranking T_0 structures: %Y A245567 A000112 (unlabeled topologies), %Y A245567 A001035 (topologies), %Y A245567 A059201 (covering set-systems), %Y A245567 A245567 (antichain covers), %Y A245567 A309615 (covering set-systems closed under intersection), %Y A245567 A316978 (factorizations), %Y A245567 A319559 (unlabeled set-systems by weight), %Y A245567 A319564 (integer partitions), %Y A245567 A319637 (unlabeled covering set-systems), %Y A245567 A326939 (covering sets of subsets), %Y A245567 A326940 (set-systems), %Y A245567 A326941 (sets of subsets), %Y A245567 A326943 (covering sets of subsets closed under intersection), %Y A245567 A326944 (covering sets of subsets with {} and closed under intersection), %Y A245567 A326945 (sets of subsets closed under intersection), %Y A245567 A326946 (unlabeled set-systems), %Y A245567 A326947 (BII-numbers of set-systems), %Y A245567 A326948 (connected set-systems), %Y A245567 A326949 (unlabeled sets of subsets), %Y A245567 A326950 (antichains), %Y A245567 A326959 (set-systems closed under intersection), %Y A245567 A327013 (unlabeled covering set-systems closed under intersection), %Y A245567 A327016 (BII-numbers of topologies). %K A245567 nonn,hard,nice,more %O A245567 0,1 %A A245567 _Patrick De Causmaecker_, Jul 25 2014 %E A245567 Definition corrected by _Patrick De Causmaecker_, Oct 10 2014 %E A245567 a(9), based on A000372, from _Patrick De Causmaecker_, Jun 01 2023