A245568 Initial members of prime quadruples (n, n+2, n+24, n+26).
5, 17, 617, 857, 1277, 1427, 1697, 2087, 2687, 3557, 4217, 5417, 5477, 7307, 8837, 9437, 10067, 13877, 17657, 18287, 20747, 21587, 23537, 25577, 27917, 28547, 30467, 32117, 32297, 35507, 37337, 37547, 40127, 41177, 41387, 41957
Offset: 1
Keywords
Examples
For n = 17, the numbers 17, 19, 41, 43 are primes.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..100000
- Eric Weisstein's World of Mathematics, Prime Quadruplet.
- Eric Weisstein's World of Mathematics, Twin Primes
- Wikipedia, Twin prime
Programs
-
Mathematica
a245568[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 24], PrimeQ[# + 26]] &]; a245568[5000] (* Michael De Vlieger, Jan 11 2015 *)
-
Python
from sympy import isprime for n in range(1,10000001,2): if isprime(n) and isprime(n+2) and isprime(n+24) and isprime(n+26): print(n,end=', ')
Comments