This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245579 #68 Dec 31 2023 11:30:27 %S A245579 1,2,6,4,10,12,14,8,27,20,22,24,26,28,60,16,34,54,38,40,84,44,46,48, %T A245579 75,52,108,56,58,120,62,32,132,68,140,108,74,76,156,80,82,168,86,88, %U A245579 270,92,94,96,147,150,204,104,106,216,220,112,228,116,118,240,122 %N A245579 Number of odd divisors of n multiplied by n. %H A245579 Jens Kruse Andersen, <a href="/A245579/b245579.txt">Table of n, a(n) for n = 1..10000</a> %H A245579 Omar E. Pol, <a href="/A245579/a245579.txt">Comments on A245579</a>. %F A245579 a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = p^e * (e+1) if p>2. %F A245579 a(n) = n * A001227(n). %F A245579 G.f.: Sum_{k>0 odd} k * x^k / (1 - x^k)^2. %F A245579 From _Amiram Eldar_, Dec 31 2022: (Start) %F A245579 Dirichlet g.f.: zeta(s-1)^2*(1-1/2^(s-1)). %F A245579 Sum_{k=1..n} a(k) ~ n^2*log(n)/4 + (4*gamma + 2*log(2) - 1)*n^2/8, where gamma is Euler's constant (A001620). (End) %e A245579 G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 8*x^8 + ... %e A245579 For n = 10 there are two odd divisors of 10: 1 and 5, so a(10) = 2*10 = 20. %p A245579 seq(n*numtheory:-tau(n/2^padic:-ordp(n,2)), n=1..100); # _Robert Israel_, Apr 26 2017 %t A245579 a[ n_] := If[ n < 1, 0, n Sum[ Mod[d, 2], {d, Divisors @ n}]]; %t A245579 (* Second program: *) %t A245579 Table[n DivisorSum[n, 1 &, OddQ], {n, 61}] (* _Michael De Vlieger_, Apr 24 2017 *) %o A245579 (PARI) {a(n) = if( n<1, 0, n * sumdiv(n, d, d%2))}; %o A245579 (PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, if( k%2, k * x^k / (1 - x^k)^2), x * O(x^n)), n))}; %o A245579 (PARI) {a(n) = if( n<1, 0, n * numdiv(n / 2^valuation(n, 2)))} \\ Fast when n has many divisors. _Jens Kruse Andersen_, Jul 26 2014 %o A245579 (Python) %o A245579 from sympy import divisors %o A245579 def a(n): return n*len(list(filter(lambda i: i%2==1, divisors(n)))) # _Indranil Ghosh_, Apr 24 2017 %o A245579 (Python) %o A245579 from math import prod %o A245579 from sympy import factorint %o A245579 def A245579(n): return n*prod(e+1 for e in factorint(n>>(~n&n-1).bit_length()).values()) # _Chai Wah Wu_, Dec 31 2023 %Y A245579 Cf. A000005, A001227, A001511, A001620, A038040, A285891, A299765, A328362, A328365, A352257, A352505. %K A245579 nonn,mult %O A245579 1,2 %A A245579 _Michael Somos_, Jul 26 2014 %E A245579 Edited by _N. J. A. Sloane_, Apr 27 2022