This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245584 #22 Sep 25 2023 16:54:50 %S A245584 1,2,3,12,122,1222,12222,122222,1222222,12222222,122222222 %N A245584 Let f(m) put the leftmost digit of the positive integer m at its end; a(n) is the sequence of all positive integers m with f^2(m)=f(m^2). %F A245584 One can easily prove that all integers of the form 12...2 are elements of the sequence. %e A245584 122^2=14884 and 221^2=48841. %t A245584 f[m_Integer] := Module[{w}, w := IntegerDigits[m]; FromDigits[Rest[AppendTo[w, First[w]]]]]; a245584[n_Integer] := %t A245584 Select[Range[n], If[f[#]^2 == f[#^2] && ! Mod[#, 10] == 0, True, False] &]; a245584[10^5] (* _Michael De Vlieger_, Aug 17 2014 *) %o A245584 (Python) %o A245584 import math %o A245584 max = 10000 %o A245584 print('los') %o A245584 for n in range(1, max): %o A245584 nst = str(n*n) %o A245584 nnewst = nst[1:] + nst[0] %o A245584 d = int(nnewst) %o A245584 e = int(math.sqrt(d)) %o A245584 est = str(e) %o A245584 enewst = est[len(est)-1] + est[:len(est)-1] %o A245584 if (e * e == d) and (nnewst[0] != "0") and (str(n) == enewst): %o A245584 print(n, ' ', e) %o A245584 print('End.') %Y A245584 Cf. A045878, A090843. %K A245584 nonn,base,more %O A245584 1,2 %A A245584 _Reiner Moewald_, Jul 26 2014