This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245589 #25 Nov 10 2024 05:16:13 %S A245589 53,593,1747,2287,4013,4409,5563,6317,8117,10657,10853,11933,12547, %T A245589 12583,12653,15161,16937,17047,17851,18341,19603,19949,20107,22051, %U A245589 26693,31051,32993,35851,35911,39113,42209,42533,44041,46889,47527,48259,50417,51461 %N A245589 Primes which are the average of the two adjacent primes and also of the two adjacent squarefree numbers. %C A245589 Intersection of A006562 and A240475. Intersection of A006562 and A245289. %H A245589 Jens Kruse Andersen, <a href="/A245589/b245589.txt">Table of n, a(n) for n = 1..10000</a> %e A245589 53 is in this sequence because 53 = prime(16) = (prime(15) + prime(17))/2 = (47 + 59)/2 and 53 = squarefree(33) = (squarefree(32) + squarefree(34))/2 = (51 + 55)/2. %p A245589 Primes:= select(isprime,[$1..10^5]): %p A245589 Sqfree:= select(numtheory:-issqrfree,[$1..10^5]): %p A245589 A:= NULL: %p A245589 for i from 2 to nops(Primes)-1 do %p A245589 if Primes[i] = (Primes[i+1]+Primes[i-1])/2 then %p A245589 member(Primes[i],Sqfree,'j'); %p A245589 if Primes[i] = (Sqfree[j-1]+Sqfree[j+1])/2 then %p A245589 A:= A,Primes[i] %p A245589 fi %p A245589 fi %p A245589 od: %p A245589 A; # _Robert Israel_, Aug 21 2014 %o A245589 (PARI) %o A245589 maxp=60000; %o A245589 p=[]; my(v=primes(maxp)); for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], p=concat(p, v[k]))); p; %o A245589 v = select(n->issquarefree(n), vector(maxp, n, n)); %o A245589 s=[]; for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], s=concat(s, v[k]))); s; %o A245589 setintersect(p, s) \\ _Colin Barker_, Aug 07 2014 %Y A245589 Cf. A006562, A240475, A245289. %K A245589 nonn %O A245589 1,1 %A A245589 _Juri-Stepan Gerasimov_, Jul 26 2014 %E A245589 Missing term (16937) inserted by _Colin Barker_, Aug 07 2014