cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245624 Sequence of distinct least positive numbers such that the average of the first n terms is a cube.

This page as a plain text file.
%I A245624 #56 Aug 20 2022 02:24:45
%S A245624 1,15,8,84,27,249,64,552,125,1035,216,1740,343,2709,512,3984,729,5607,
%T A245624 1000,7620,1331,10065,1728,12984,2197,16419,2744,20412,3375,25005,
%U A245624 4096,30240,4913,36159,5832,42804,6859,50217,8000,58440,9261,67515,10648,77484,12167,88389,13824
%N A245624 Sequence of distinct least positive numbers such that the average of the first n terms is a cube.
%C A245624 Colin Barker's formulas are true if the curve x^3 = 7*y^3 + 6*y^2 + 2*y has no positive integer solutions.  This is a curve of genus 1 (equivalent to the elliptic curve s^3 + t^2 + 20), and does have some rational points, but no positive integer solutions at least for y <= 10^21. - _Robert Israel_, May 17 2015
%C A245624 Now confirmed: that curve has no positive integer solutions. See the Mathematics Stack Exchange link. - _Robert Israel_, May 18 2015
%H A245624 Colin Barker, <a href="/A245624/b245624.txt">Table of n, a(n) for n = 1..1000</a>
%H A245624 R. Israel, W. Jagy and Á. Lozano-Robledo, <a href="http://math.stackexchange.com/questions/1283013/integer-solutions-of-x3-7y3-6-y22-y">Integer Solutions of x^3 = 7 y^3 + 6 y^2 + 2 y</a>, Mathematics Stack Exchange question (2015).
%H A245624 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1).
%F A245624 a(2*n-1) = n^3, a(2*n) = 7*n^3 + 6*n^2 + 2*n.
%F A245624 a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n > 8. - _Colin Barker_, Nov 05 2014
%F A245624 G.f.: x*(3*x^5 + x^4 + 24*x^3 + 4*x^2 + 15*x + 1) / ((x-1)^4*(x+1)^4). - _Colin Barker_, Nov 05 2014
%p A245624 seq(op([k^3, 7*k^3+6*k^2+2*k]),k=1..100); # _Robert Israel_, May 18 2015
%t A245624 Flatten[Table[{n^3, 7 n^3 + 6 n^2 + 2 n}, {n, 25}]] (* _Vincenzo Librandi_, May 19 2015 *)
%o A245624 (PARI) v=[]; n=1; while(n<10^5, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v), n)==0, for(i=1, n+2, if(i^3>(num/(#v+1)), break); if(i^3==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=1; break))); n++)
%o A245624 (Magma) &cat[[k^3, 7*k^3+6*k^2+2*k]: k in [1..25]]; // _Vincenzo Librandi_, May 19 2015
%o A245624 (PARI) Vec(x*(3*x^5+x^4+24*x^3+4*x^2+15*x+1)/((x-1)^4*(x+1)^4) + O(x^100)) \\ _Colin Barker_, May 19 2015
%Y A245624 Cf. A085047, A245621.
%K A245624 nonn,easy
%O A245624 1,2
%A A245624 _Derek Orr_, Nov 05 2014