A245632 Least number k such that n concatenated with k is a perfect power.
6, 5, 2, 9, 12, 4, 29, 1, 61, 0, 56, 1, 31, 4, 21, 9, 28, 49, 6, 25, 6, 5, 104, 3, 6, 244, 44, 9, 16, 25, 25, 4, 64, 3, 344, 1, 21, 44, 69, 0, 209, 25, 56, 1, 369, 24, 61, 4, 13, 41, 2, 9, 29, 76, 225, 25, 6, 32, 29, 84, 504, 5, 504, 516, 61, 564, 6, 59, 169, 56, 289, 9, 96, 529, 69, 176, 44, 4, 21, 656
Offset: 1
Examples
16 is the smallest perfect power > 9 beginning with 1. Thus a(1) = 6.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
conc:= proc(n,k) if k = 0 then 10*n else 10^(1+ilog10(k))*n+k fi end proc: ispow:= proc(x) local F; F:= ifactors(x)[2]; evalb(igcd(seq(f[2],f=F))>1) end proc: a:= proc(n) local k; for k from 0 do if ispow(conc(n,k)) then return k fi od end proc; seq(a(n),n=1..100); # Robert Israel, Jul 28 2014
-
PARI
a(n)=p="";for(k=0,oo,p=concat(Str(n),Str(k));if(ispower(eval(p)),return(k))) n=1;while(n<100,print1(a(n),", ");n++)
-
Python
from sympy import perfect_power def a(n): s, k = str(n), 0 while not perfect_power(int(s+str(k))): k += 1 return k print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 05 2021