cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245648 The largest member 'c' of the Pythagorean triples (a,b,c) ordered by increasing c, where the triples consist of a triangular number, a square number and a pentagonal number.

This page as a plain text file.
%I A245648 #24 Dec 16 2021 14:08:17
%S A245648 5,15,145,2775
%N A245648 The largest member 'c' of the Pythagorean triples (a,b,c) ordered by increasing c, where the triples consist of a triangular number, a square number and a pentagonal number.
%C A245648 Next term comes from a triple with c > 10^5.
%C A245648 From _Michel Marcus_, Apr 08 2021: (Start)
%C A245648 The 4 known triples that satisfy the requisite are [3,4,5], [9,12,15], [100, 105, 145], [900, 2625, 2775].
%C A245648 Let po(n) be A176774(n), the least polygonality of a number.
%C A245648   po([3,4,5]) = [3,4,5]; <-----
%C A245648   po([9,12,15]) = [4,5,3];
%C A245648   po([100,105,145]) = [4,3,5]; <-----
%C A245648   po([900,2625,2775]) = [4,5,3].
%C A245648 So for the 2 highlighted triples, we have a-gonal^2 + b-gonal^2 = c-gonal^2. Are there other Pythagorean triples with the same property?
%C A245648 Let nb(n) be A177025(n) is the number of ways to represent n as a polygonal number.
%C A245648   nb([3,4,5]) = [1,1,1]; <-----
%C A245648   nb([9,12,15]) = [4,5,3];
%C A245648   nb([100,105,145]) = [4,3,5];
%C A245648   nb([900,2625,2775]) = [4,5,3].
%C A245648 So for the highlighted triple, we get [1,1,1]. Are there other Pythagorean triples with the same property? (End)
%C A245648 Regarding the first question by _Michel Marcus_, if such triple [x,y,z] exists, then z > 10^4. Regarding his second question, if such triple exists, then z > 10^7. - _Ivan N. Ianakiev_, Dec 16 2021
%C A245648 a(5) > 10^11, if it exists. - _Giovanni Resta_, Apr 15 2021
%e A245648 a(1) = 5 as the first such Pythagorean triple is (3,4,5). The next three triples are (9,12,15), (100,105,145), (900,2625,2775).
%t A245648 n=10^3;ppt={};list={};pos=1;t[x_]:=(IntegerPart[Sqrt[2*x]])*(IntegerPart[Sqrt[2*x]]+1)/2;ls[x_]:=Length[Sqrt[x]];lis[x_]:=Length[IntegerPart[Sqrt[x]]];lp[x_]:=Length[(Sqrt[24*x+1]+1)/6];lip[x_]:=Length[IntegerPart[(Sqrt[24*x+1]+1)/6]];Do[y=x+1;z=y+1;While[z<=n,While[z^2<x^2+y^2,z=z+1];If[z^2==x^2+y^2,AppendTo[ppt,{x,y,z}]];y=y+1],{x,1,n}];While[pos<Length[ppt]+1,a=ppt[[pos,1]];b=ppt[[pos,2]];c=ppt[[pos,3]];If[Or[And[t[a]==a,ls[b]==lis[b],lp[c]==lip[c]],And[t[a]==a,ls[c]==lis[c],lp[b]==lip[b]],And[t[b]==b,ls[a]==lis[a],lp[c]==lip[c]],And[t[b]==b,ls[c]==lis[c],lp[a]==lip[a]],And[t[c]==c,ls[a]==lis[a],lp[b]==lip[b]],And[t[c]==c,ls[b]==lis[b],lp[a]==lip[a]]],AppendTo[list,{a,b,c}]];pos++];l=Flatten[Sort[list,#1[[3]]<#2[[3]]&]];Take[l,{3,-1,3}](*Finds the terms through a search within all Pythagorean triples with c <= n*)
%Y A245648 Cf. A000217, A000290, A000326, A245646, A245647.
%Y A245648 Cf. A176774, A177025.
%K A245648 nonn,more,hard
%O A245648 1,1
%A A245648 _Ivan N. Ianakiev_, Jul 28 2014