A245649 Numbers n such that the sum of the non-anti-divisors of n is a multiple of the sum of the anti-divisors of n.
3, 5, 12, 27, 39, 41, 48, 63, 324, 1275, 1599, 2259, 2304, 3124, 3724, 14295, 19464, 21659, 40655, 44659, 262983, 338064, 485463, 505407, 686700, 696795, 898528, 1595384, 10377100, 12332927, 14452991, 14883967, 21024479, 23068975, 25527535, 30971420, 37471143
Offset: 1
Keywords
Examples
The anti-divisors of 14295 are 2, 6, 10, 11, 23, 30, 113, 253, 1243, 1906, 2599, 5718, 9530 which sum is 21444. The sum of the non-anti-divisors is 14295*14296 / 2 - 21444 = 102159216 and 102159216 / 21444 = 4764.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..70
Programs
-
Maple
with(numtheory):P:=proc(q) local a,j,k,n; for n from 3 to q do k:=0; j:=n; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2; if type(n*(n+1)/(2*a),integer) then print(n); fi; od; end: P(10^10);
Extensions
a(28)-a(37) from Lars Blomberg, Oct 27 2014
Comments