This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245651 #18 Feb 16 2025 08:33:23 %S A245651 3,1,8,7,7,6,6,2,5,9,2,5,0,2,9,6,7,5,4,8,0,0,8,1,7,6,9,7,7,8,0,1,3,1, %T A245651 8,1,9,7,2,1,2,4,1,8,6,7,8,7,8,7,0,1,7,0,1,9,7,5,4,9,6,8,1,7,8,9,5,7, %U A245651 3,2,3,4,2,6,0,2,2,9,9,0,0,6,4,0,9,1 %N A245651 Decimal expansion of eta/xi = A086318/A086317, a coefficient associated with the asymptotics of the number of weakly binary trees. %D A245651 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297. %H A245651 Vincenzo Librandi, <a href="/A245651/b245651.txt">Table of n, a(n) for n = 0..1000</a> %H A245651 Nils Berglund, Christian Kuehn, <a href="https://hal.archives-ouvertes.fr/hal-01432157">Model Spaces of Regularity Structures for Space-Fractional SPDEs</a>, Journal of Statistical Physics, Springer Verlag, 2017, 168 (2), pp.331-368; HAL Id : hal-01432157. %H A245651 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/WeaklyBinaryTree.html">Weakly binary tree</a> %e A245651 0.31877662592502967548008176977801318197212418678787017019754968178957323426... %t A245651 digits = 103; Clear[c, k]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; k[n_] := k[n] = (Sqrt[c[n]^2^(-n)]*Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]])/(c[n]^2^(-n)*(2*Sqrt[Pi])); k[5]; k[n = 10]; While[RealDigits[k[n], 10, digits] != RealDigits[k[n-5], 10, digits], n = n+5]; RealDigits[k[n], 10, digits] // First %Y A245651 Cf. A086317, A086318. %K A245651 nonn,cons %O A245651 0,1 %A A245651 _Jean-François Alcover_, Jul 28 2014