This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245663 #26 Sep 17 2024 16:00:44 %S A245663 10,43,86,87,188,156,291,364,432,410,7,510,4,4,4,813,4,1079,4,1900,6, %T A245663 10,6,2330,2147,5,3463,2401,7,2522,5,3884,5,5,8316,3621,5,8,8,4866,5, %U A245663 5,5,5,6302,5,5,8616,5 %N A245663 The first number k such that the sum of the base n digits of k! does not divide k!. %C A245663 a(n)! > n. - _Robert Israel_, Aug 17 2014 %H A245663 Dimitri Zucker, <a href="https://www.youtube.com/watch?v=b2zhTrggRDE">Factorial Fact Frenzy (!)</a>, Combo Class Youtube video (2022). %e A245663 The sum of the base-2 digits of 10! is 1+1+0+1+1+1+0+1+0+1+1+1+1+1+0+0+0+0+0+0+0+0=11, which does not divide 10!. Since the sum of the base-2 digits of k! divides k! for 0 <= k <= 9, a(2) = 10. %e A245663 The sum of the base-3 digits of 43! is 106, which does not divide 43!. Since the sum of the base-3 digits of k! divides k! for 0 <= k <= 42, a(3) = 43. %p A245663 f:= proc(n) %p A245663 local f,k; %p A245663 for k from 1 do %p A245663 f:= k!; %p A245663 if f mod convert(convert(f,base,n),`+`) <> 0 then return k fi; %p A245663 od %p A245663 end proc: %p A245663 seq(f(n),n=2..30); # _Robert Israel_, Aug 10 2014 %t A245663 a245663[n_Integer] := Module[{f = 2, k = 2}, While[Divisible[f, Total[IntegerDigits[f, n]]] == True, k++; f = k!]; k]; a245663 /@ Range[2, 50] (* _Michael De Vlieger_, Aug 15 2014 *) %o A245663 (Haskell) %o A245663 fac :: Integer -> Integer %o A245663 fac 0 = 1 %o A245663 fac n = foldl (*) 1 [2..n] %o A245663 base 0 b = [] %o A245663 base a b = (a `mod` b) : base ((a-(a `mod` b)) `div` b) b %o A245663 bAse a b = reverse (base a b) %o A245663 sigbAse a b = foldl (+) 0 (bAse a b) %o A245663 f n = [k | k <- [1..], not ((fac k) `mod` (sigbAse (fac k) n) == 0)] !! 0 %o A245663 main = print (map f [2..20]) -- generates values for n = 2 through 20. May be slow for values over 30. %o A245663 (PARI) sumd(k, n) = my(d = digits(k, n)); sum(j=1, #d, d[j]); %o A245663 a(n) = {k = 2; fk = k!; while (fk % sumd(fk, n) == 0, k++; fk = k!); k;} \\ _Michel Marcus_, Aug 10 2014 %Y A245663 Sum of the base n digits of k for n = 2, 3 and 10 respectively: A000120, A053735, A007953. %Y A245663 Cf. A066419. %K A245663 nonn,base %O A245663 2,1 %A A245663 _G. H. Faust_, Jul 28 2014