This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245675 #13 Dec 14 2024 09:17:24 %S A245675 1,0,0,0,0,0,0,0,0,0,0,0,1,2,3,7,4,1,2,5,7,5,7,3,6,1,1,0,2,2,8,7,1,9, %T A245675 6,1,0,6,4,6,6,7,2,8,7,4,2,9,7,7,3,2,0,4,8,1,9,6,5,4,8,4,4,3,8,4,4,1, %U A245675 7,1,8,2,5,6,4,0,5,3,0,4,2,8,8,5,0,9,1,3,8,8,5,5,8,6,1,9,3,5,2,4,9,7,6 %N A245675 Decimal expansion of 'nu', a coefficient related to the variance for searching corresponding to patricia tries. %C A245675 Curiously, this constant is very close to 1 (up to a 10^-12 gap). This can be explained via the Dedekind eta function, after Steven Finch. %D A245675 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing p. 341 and Section 5.14 Digital Search Tree Constants p. 356. %H A245675 Vincenzo Librandi, <a href="/A245675/b245675.txt">Table of n, a(n) for n = 1..1000</a> %H A245675 Wikipedia, <a href="http://en.wikipedia.org/wiki/Radix_tree">Radix tree</a> %F A245675 nu = 1/12 + Pi^2/(6*log(2)^2) + 2*sigma/log(2), where sigma = sum_{k=1..infinity} (-1)^k/(k*(2^k-1)). %e A245675 1.000000000001237412575736110228719610646672874297732... %t A245675 digits = 103; sigma = NSum[(-1)^k/(k*(2^k-1)), {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[1/12 + Pi^2/(6*Log[2]^2) + 2*sigma/Log[2], 10, digits] // First %Y A245675 Cf. A086311, A086312. %K A245675 nonn,cons %O A245675 1,14 %A A245675 _Jean-François Alcover_, Jul 29 2014