This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245682 #28 May 22 2025 10:21:39 %S A245682 123876,142857,153846,230769,285714,1028574,1218753,1238760,1239876, %T A245682 1246878,1294857,1402857,1420785,1425897,1428507,1428570,1428597, %U A245682 1428705,1429857,1485792,1492857,1538460,1539846,1570284,1584297,2300769,2307690,2307699,2309769,2857014,2857140,2859714,2985714,10028574,10178649 %N A245682 Numbers x whose digits can be permuted to produce more than a single multiple of x. %C A245682 It is a subset of A245680. %C A245682 If x < 10^d is in the sequence, then so are x*10^j*(1+10^d+...+10^k*d) for all nonnegative integers j and k. - _Robert Israel_, Jul 29 2014 %H A245682 Paolo P. Lava, <a href="/A245682/b245682.txt">Table of n, a(n) for n = 1..200</a> %e A245682 Two permutations of 123876 are 371628, 867132 and 371628 / 123876 = 3, 867132 / 123876 = 7. %e A245682 Five permutations of 142857 are 285714, 428571, 571428, 714285, 857142 and 285714 / 142857 = 2, 428571 / 142857 = 3, 571428 / 142857 = 4, 714285 / 142857 = 5, 857142 / 142857 = 6. %p A245682 P:=proc(q) local a,b,c,i,j,k,n,t; for n from 1 to q do a:=n; b:=[]; %p A245682 while a>0 do b:=[a mod 10,op(b)]; a:=trunc(a/10); od; %p A245682 t:=0; for i from 2 to 9 do a:=i*n; c:=[]; %p A245682 while a>0 do c:=[a mod 10,op(c)]; a:=trunc(a/10); od; %p A245682 if sort(b)=sort(c) then t:=t+1; fi; if t>1 then print(n); break; %p A245682 fi; od; od; end: P(10^10); %p A245682 # Alternative %p A245682 N:= 10: # get a(1) to a(N) %p A245682 count:= 0: %p A245682 for x from 10 while count < N do %p A245682 M:= 10^(ilog10(x)+1)-1; %p A245682 L:= sort(convert(x,base,10)); %p A245682 mults:= 0; %p A245682 for i from 2 to floor(M/x) do %p A245682 Lp:= sort(convert(i*x,base,10)); %p A245682 if Lp = L then %p A245682 mults:= mults+1; %p A245682 if mults = 2 then %p A245682 count:= count+1; %p A245682 A[count]:= x; %p A245682 print(x); %p A245682 break; %p A245682 fi %p A245682 fi %p A245682 od %p A245682 od: %p A245682 seq(A[i],i=1..count); # _Robert Israel_, Jul 29 2014 %o A245682 (Python) %o A245682 import itertools %o A245682 from itertools import permutations %o A245682 for n in range(1,10**8): %o A245682 plist = list(permutations(str(n))) %o A245682 count = 0 %o A245682 lst = [] %o A245682 for i in plist: %o A245682 num = '' %o A245682 for j in range(len(i)): %o A245682 num += i[j] %o A245682 if int(num)%n==0 and int(num)/n > 1: %o A245682 if int(num) not in lst: %o A245682 lst.append(int(num)) %o A245682 count += 1 %o A245682 if count > 1: %o A245682 print(n,end=', ') # _Derek Orr_, Jul 29 2014 %o A245682 (PARI) %o A245682 for(n=1,10^8,d=vecsort(digits(n));p=0;for(k=2,9,dd=vecsort(digits(n*k));if(d==dd,p++));if(p>1,print1(n,", "))) \\ faster program _Derek Orr_, Jul 29 2014 %Y A245682 Cf. A008919, A096092, A096093, A245680. %K A245682 nonn,base %O A245682 1,1 %A A245682 _Paolo P. Lava_, Jul 29 2014 %E A245682 a(7) to a(10) from _Robert Israel_, Jul 29 2014 %E A245682 a(11) - a(35) from _Derek Orr_, Jul 29 2014