A245689 Smallest divisor of n that is greater than the smallest prime not dividing n (A053669(n)).
3, 4, 5, 6, 7, 4, 3, 5, 11, 6, 13, 7, 3, 4, 17, 6, 19, 4, 3, 11, 23, 6, 5, 13, 3, 4, 29, 10, 31, 4, 3, 17, 5, 6, 37, 19, 3, 4, 41, 6, 43, 4, 3, 23, 47, 6, 7, 5, 3, 4, 53, 6, 5, 4, 3, 29, 59, 10, 61, 31, 3, 4, 5, 6, 67, 4, 3, 5, 71, 6, 73, 37, 3, 4, 7, 6, 79
Offset: 3
Keywords
Examples
For n = 30 the smallest prime not dividing n is 7 and the smallest divisor of 30 that is greater than 7 is 10, so a(30) = 10.
Links
- K. Spage, Table of n, a(n) for n = 3..1000
Programs
-
Maple
a:= proc(n) uses numtheory; local F,p; if n::odd then p:= 2 else F:= map(pi,factorset(n)); p:= ithprime(min(map(`+`,F,1) minus F)); fi; min(select(`>`,divisors(n),p)); end proc: seq(a(n),n=3..100); # Robert Israel, Jul 31 2014
-
Mathematica
A053669[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[CoprimeQ[n, p], Return[p]]]]; A245689[n_] := SelectFirst[Divisors[n], # > A053669[n]&]; Table[A245689[n], {n, 3, 100}] (* Jean-François Alcover, May 15 2023 *)
-
PARI
A053669(n)={forprime(p=2, ,if(n%p, return(p)))} A245689(n) ={my(c=A053669(n)+1);while(n%c,c++);c}
Formula
a(n) = n if n is an odd prime.
Comments