This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245696 #14 Jan 30 2023 12:30:29 %S A245696 0,4,5,42,7,8,279,130,121,156,13,322,15,752,901,1062,779,2020,651,682, %T A245696 1679,2136,1825,3874,999,1204,2929,930,31,1952,33,34,6755,4068,4699, %U A245696 3686,39,2920,3403,5502,3397,4796,4905,2438,4183,3792,5047,2950,4947,9308,3551,3186,6985,3416,26277,16066,6431,8220,8479,4402,4473,6464,23335,8382,21239,12988,17319,7210,6887,54072,11899,27602 %N A245696 Least number k >= 0 such that (n!-k)/n is prime. %C A245696 a(n) < n! for all n > 2. %C A245696 a(n) = n times (least m >= 0 such that (n-1)!-m is prime) = n*A033933(n-1). - _Jens Kruse Andersen_, Jul 30 2014 (This shows that a(n) always exists.) %H A245696 Jens Kruse Andersen, <a href="/A245696/b245696.txt">Table of n, a(n) for n = 3..2001</a> %e A245696 (6!-42)/6 = 113 is prime. Since 42 is the smallest number to produce a prime, a(6) = 42. %t A245696 lnk[n_]:=Module[{k=0},While[!PrimeQ[(n!-k)/n],k++];k]; Array[lnk,80,3] (* _Harvey P. Dale_, Jan 30 2023 *) %o A245696 (PARI) %o A245696 a(n)=for(k=0,10^6,s=(n!-k)/n;if(floor(s)==s,if(ispseudoprime(s),return(k)))) %o A245696 n=3;while(n<100,print1(a(n),", ");n++) %Y A245696 Cf. A033933, A245695, A245697. %K A245696 nonn %O A245696 3,2 %A A245696 _Derek Orr_, Jul 29 2014