A245697 Least number k such that (n!+k)/n and (n!-k)/n are both prime.
0, 4, 25, 42, 133, 152, 279, 170, 121, 204, 1079, 938, 5295, 3632, 2771, 1062, 1159, 2260, 7413, 682, 33281, 13704, 9725, 4966, 9099, 24724, 2929, 54690, 20429, 22688, 5379, 46274, 15365, 11052, 40441, 65854, 97149, 42520, 44731, 83958, 61877, 4796, 123885, 27922, 122999, 12912, 5047
Offset: 3
Keywords
Examples
(4!+4)/4 = 7 is prime and (4!-4)/4 = 5 is prime. Thus a(4) = 4.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 3..101
Programs
-
PARI
a(n)=for(k=0,10^7,s1=(n!-k)/n;s2=(n!+k)/n;if(floor(s1)==s1&&floor(s2)==s2,if(ispseudoprime(s1)&&ispseudoprime(s2),return(k)))) n=3;while(n<100,print1(a(n),", ");n++)
Comments