A245700 Decimal expansion of the expected distance from a randomly selected point in an equilateral triangle of side length 1 to a corner: (4+log(27))/12.
6, 0, 7, 9, 8, 6, 4, 0, 5, 5, 0, 0, 3, 6, 0, 7, 5, 6, 1, 8, 2, 1, 4, 4, 6, 4, 2, 5, 6, 3, 9, 6, 4, 7, 5, 9, 4, 9, 5, 2, 0, 5, 9, 7, 2, 7, 8, 9, 0, 2, 0, 6, 9, 6, 2, 6, 7, 0, 0, 6, 9, 1, 6, 7, 4, 2, 7, 0, 6, 9, 0, 6, 6, 3, 7, 9, 8, 5, 5, 7, 5, 0, 5, 1, 7, 3, 7, 2, 7, 2, 0, 3, 6, 7, 6, 6, 3, 5, 5, 5, 3, 0, 3, 2, 5, 8, 4, 0, 5, 9, 9, 8, 2, 2, 7, 9, 9, 7, 6
Offset: 0
Examples
0.607986405500360756182144642563964759495205972789020696267006916742706906637985...
Links
- Eric Weisstein's World of Mathematics, Triangle Point Picking.
- Index entries for transcendental numbers
Crossrefs
Cf. A245698.
Programs
-
Mathematica
RealDigits[(4 + Log[27])/12, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)
-
PARI
(4+log(27))/12 \\ Charles R Greathouse IV, Apr 20 2016
Formula
Equals Sum_{k>=1} k/((2*k-1)*2^(2*k-1)). - Amiram Eldar, May 27 2021