This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245699 #25 Sep 08 2022 08:46:09 %S A245699 5,4,1,0,7,5,0,8,0,0,4,6,7,4,3,5,0,4,4,6,4,6,7,3,3,6,0,0,8,3,5,2,2,6, %T A245699 6,7,5,5,0,2,3,1,7,7,0,7,8,2,1,8,9,0,8,4,2,9,9,5,7,1,5,9,2,0,3,2,0,5, %U A245699 6,6,6,8,1,8,2,3,3,8,0,6,0,1,5,5,8,8,9,6,9,1,0,7,8,5,4,2,2,0,9,3,5,6,5,2,7,8,8,4,0,3,0,4,7,4,2,3,1,8,1,4 %N A245699 Decimal expansion of the expected distance from a randomly selected point in a 45-45-90 degree triangle of base length 1 to the vertex of the right angle: (4+sqrt(2)*log(3+2*sqrt(2)))/12. %H A245699 G. C. Greubel, <a href="/A245699/b245699.txt">Table of n, a(n) for n = 0..10000</a> %H A245699 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A245699 Equals Integral_{y = 0..Pi/4; x = 0..1/(sqrt(2)*cos(y))} 4x^2 dx dy. %F A245699 Equals Integral_{y = 0..Pi/4} (sqrt(2)/3)*sec^3(y) dy. %e A245699 0.54107508004674350446467336008352266755023177078218908429957159203205... %p A245699 evalf((4+sqrt(2)*log(3+2*sqrt(2)))/12,100); # _Muniru A Asiru_, Oct 07 2018 %t A245699 RealDigits[(4 + Sqrt[2]*Log[3 + 2*Sqrt[2]])/12, 10, 100][[1]] (* _G. C. Greubel_, Oct 06 2018 *) %o A245699 (PARI) default(realprecision, 100); (4+sqrt(2)*log(3+2*sqrt(2)))/12 \\ _G. C. Greubel_, Oct 06 2018 %o A245699 (Magma) SetDefaultRealField(RealField(100)); (4+Sqrt(2)*Log(3 +2*Sqrt(2)))/12; // _G. C. Greubel_, Oct 06 2018 %Y A245699 Cf. A103712. %K A245699 nonn,cons %O A245699 0,1 %A A245699 _Derek Orr_, Jul 29 2014