This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245727 #18 May 22 2025 10:21:39 %S A245727 0,1,4,3,4,1,2,1,2,3,6,1,6,9,8,3,4,5,12,7,8,15,10,13,6,7,2,5,10,7,6, %T A245727 19,10,15,4,1,2,9,4,9,12,1,6,3,2,3,4,13,2,1,2,9,28,17,2,1,22,3,22,7,2, %U A245727 1,4,5,4,7,12,1,2,9,6,11,20,3,2,5,12,1,14,1,10,5,4,37,12,3,16,5,10 %N A245727 Least number k >= 0 such that n concatenated with n + k is prime. %H A245727 Alois P. Heinz, <a href="/A245727/b245727.txt">Table of n, a(n) for n = 1..10000</a> %F A245727 a(n) = A228325(n) - n for n > 1. %e A245727 33 is not prime. 34 is not prime. 35 is not prime. 36 is not prime. 37 is prime. Since 7 is 4 more than 3, a(3) = 4. %p A245727 a:= proc(n) local j; for j from n do if isprime(n*10^(1+ilog10(j))+j) then return(j-n) fi od end proc: %p A245727 seq(a(n),n=1..100); # _Robert Israel_, Jul 30 2014 %t A245727 lnk[n_]:=Module[{k=0,idn=IntegerDigits[n]},While[!PrimeQ[FromDigits[ Join[ idn, IntegerDigits[ n+k]]]],k++];k]; Array[lnk,90] (* _Harvey P. Dale_, Oct 05 2014 *) %o A245727 (PARI) %o A245727 a(n) = for(k=n,10^4,if(isprime(eval(concat(Str(n),Str(k)))),return(k-n))) %o A245727 vector(150,n,a(n)) %o A245727 (Python) %o A245727 def a(n): %o A245727 for k in range(n,10**4): %o A245727 if isprime(str(n)+str(k)): %o A245727 return k-n %o A245727 n = 1 %o A245727 while n < 150: %o A245727 print(a(n),end=', ') %o A245727 n += 1 %Y A245727 Cf. A228325. %K A245727 nonn,base %O A245727 1,3 %A A245727 _Derek Orr_, Jul 30 2014