A245737 Decimal expansion of z_hc, the bulk limit of the number of spanning trees on a honeycomb lattice.
8, 0, 7, 6, 6, 4, 8, 6, 8, 0, 4, 8, 6, 2, 6, 2, 8, 5, 2, 3, 4, 0, 9, 1, 2, 7, 6, 8, 0, 9, 5, 1, 5, 9, 8, 5, 1, 8, 0, 6, 0, 4, 6, 0, 1, 9, 5, 1, 4, 6, 7, 5, 4, 0, 3, 2, 7, 1, 7, 1, 1, 7, 5, 9, 0, 2, 5, 3, 7, 7, 8, 2, 0, 1, 8, 1, 7, 4, 6, 0, 5, 2, 0, 9, 4, 6, 9, 0, 2, 2, 7, 2, 3, 4, 2, 8, 4, 8, 0, 1, 8, 3, 7
Offset: 0
Examples
0.8076648680486262852340912768095159851806046019514675403271711759...
Links
- Robert Shrock and F. Y. Wu, Spanning Trees on Graphs and Lattices in d Dimensions p. 7.
Programs
-
Mathematica
H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/2)*(Log[2] + Log[3] + H), 10, 103] // First
Formula
(1/2)*(log(2) + log(3) + H), where H is the auxiliary constant A242967.