This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245739 #5 Jul 31 2014 05:33:34 %S A245739 1,1,3,5,6,9,6,4,0,1,7,7,5,1,0,2,5,2,3,7,6,0,2,1,9,9,7,0,6,6,6,5,7,8, %T A245739 0,8,1,0,2,8,0,6,6,6,3,2,0,2,8,6,4,6,5,9,5,5,0,3,2,3,8,8,9,8,3,1,1,9, %U A245739 8,7,8,2,6,4,0,8,2,1,7,6,3,0,9,6,6,1,3,9,0,4,2,4,1,9,0,0,2,5,7,8,8,9,9 %N A245739 Decimal expansion of z_kag, the bulk limit of the number of spanning trees on a kagomé lattice. %H A245739 Robert Shrock and F. Y. Wu, <a href="http://arxiv.org/abs/cond-mat/0004341">Spanning Trees on Graphs and Lattices in d Dimensions</a> pp. 21-25. %H A245739 Wikipedia, <a href="http://en.wikipedia.org/wiki/Trihexagonal_tiling">Trihexagonal tiling [Kagomé lattice]</a> %F A245739 (1/3)*(2*log(2) + 2*log(3) + H), where H is the auxiliary constant A242967. %F A245739 Equals (1/3)*(A245725 + log(6)). %e A245739 1.1356964017751025237602199706665780810280666320286465955... %t A245739 H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/3)*(2*Log[2] + 2*Log[3] + H), 10, 103] // First %Y A245739 Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc). %K A245739 nonn,cons,easy %O A245739 1,3 %A A245739 _Jean-François Alcover_, Jul 31 2014