A245740 Decimal expansion of z_(3-12-12), the bulk limit of the number of spanning trees on a 3-12-12 lattice.
7, 2, 0, 5, 6, 3, 3, 2, 2, 8, 6, 6, 5, 7, 7, 1, 0, 6, 0, 7, 7, 3, 6, 4, 5, 2, 0, 6, 2, 7, 9, 5, 7, 5, 5, 2, 4, 2, 2, 3, 8, 3, 5, 1, 9, 3, 3, 2, 3, 6, 7, 0, 4, 2, 3, 8, 3, 6, 1, 4, 0, 9, 6, 1, 5, 2, 7, 9, 1, 4, 7, 4, 1, 6, 0, 4, 3, 5, 9, 9, 0, 3, 2, 0, 4, 4, 7, 9, 4, 6, 3, 9, 2, 2, 9, 4, 7, 7, 6, 6, 5, 9, 2
Offset: 0
Examples
0.720563322866577106077364520627957552422383519332367042383614...
Links
- Robert Shrock and F. Y. Wu, Spanning Trees on Graphs and Lattices in d Dimensions pp. 21-25.
- Wikipedia, Truncated hexagonal tiling
Crossrefs
Programs
-
Mathematica
H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/6)*(Log[2] + 2*Log[3] + Log[5] + H), 10, 103] // First