A245757 Numbers n such that (k!+n)/k is never prime for any k.
5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 34, 37, 39, 41, 43, 47, 48, 50, 53, 54, 55, 57, 59, 61, 62, 64, 67, 69, 71, 73, 75, 76, 77, 79, 83, 86, 89, 90, 93, 94, 97, 98, 99, 101, 103, 107, 109, 110, 111, 113, 118, 119, 122, 125, 127, 128, 129, 131, 134, 137, 139, 141, 142, 143, 146
Offset: 1
Keywords
Examples
(1!+5)/1 = 6 is not prime. (2!+5)/2 = 7/2 is not prime. (3!+5)/3 = 11/3 is not prime. (4!+5)/4 = 29/4 is not prime. (5!+5)/5 = 25 is not prime. For any k > 5, (k!+5)/k = (k-1)! + 5/k will always be a fraction and thus, never prime. So 5 is a member of this sequence.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A245756.
Programs
-
Maple
filter:= proc(n) local k; for k in numtheory:-divisors(n) do if isprime((k!+n)/k) then return false fi od: true end proc: select(filter, [$1..1000]); # Robert Israel, Jul 31 2014
-
Mathematica
filterQ[n_] := AllTrue[Divisors[n], !PrimeQ[(#! + n)/#]&]; Select[Range[200], filterQ] (* Jean-François Alcover, Jul 27 2020 *)
-
PARI
a(n)=for(k=1,n,s=(k!+n)/k;if(floor(s)==s,if(ispseudoprime(s),return(k)))) n=1;while(n<200,if(!a(n),print1(n,", "));n++)
Comments