This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245769 #50 Sep 08 2022 08:46:09 %S A245769 -1,1,7,25,87,329,1359,6001,27759,132689,649815,3242377,16421831, %T A245769 84196761,436129183,2278835681,11996748255,63568974241,338777252263, %U A245769 1814623238137,9763917858359,52750451120361,286036294786287,1556185889290065,8492182185653327,46471113779766769 %N A245769 a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)/(2k-1), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!). %C A245769 Note that a(n) is always an integer since C(n,k)*C(n+k,k) = C(n+k,2k)*C(2k,k), and C(2k,k)/(2k-1) = 2*Catalan(k-1) for k > 0. %C A245769 Conjecture: The sequence a(n+1)/a(n) (n = 3,4,...) is strictly increasing to the limit 3+2*sqrt(2), and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 5,6,...) is strictly decreasing to the limit 1. %H A245769 Zhi-Wei Sun, <a href="/A245769/b245769.txt">Table of n, a(n) for n = 0..200</a> %H A245769 Victor J. W. Guo, and Ji-Cai Liu, <a href="https://doi.org/10.1016/j.jnt.2015.04.024">Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum</a>, Journal of Number Theory, Volume 156, November 2015, Pages 154-160. Rn is a(n). %H A245769 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1408.5381">A new kind of numbers and their arithmetic properties</a>, arXiv:1408.5381 [math.NT], 2017. %F A245769 Recurrence (obtained via the Zeilberger algorithm): (n+1)*a(n) - (7*n+15)*a(n+1) + (7*n+13)*a(n+2) - (n+3)*a(n+3) = 0. %F A245769 a(n) ~ A006318(n)/2 as n tends to the infinity, thus a(n)^(1/n) has the limit 3+2*sqrt(2). %F A245769 0 = +a(n)*(+a(n+1) -15*a(n+2) +13*a(n+3) -3*a(n+4)) +a(n+1)*(+a(n+1) +50*a(n+2) -34*a(n+3) +13*a(n+4)) +a(n+2)*(-63*a(n+2) +50*a(n+3) -15*a(n+4)) +a(n+3)*(+a(n+3) +a(n+4)) for all n in Z. - _Michael Somos_, Aug 24 2014 %e A245769 a(2) = 7 since sum_{k=0,1,2}C(2,k)*C(2+k,k)/(2k-1) = -1 + 6 + 6/3 = 7. %t A245769 a[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]; Table[a[n],{n, 0, 25}] %o A245769 (PARI) for(n=0,25, print1(sum(k=0,n, binomial(n,k)*binomial(n+k,k)/(2*k -1)), ", ")) \\ _G. C. Greubel_, Aug 05 2018 %o A245769 (Magma) [(&+[Binomial(n,k)*Binomial(n+k,k)/(2*k-1): k in [0..n]]): n in [0..25]]; // _G. C. Greubel_, Aug 05 2018 %Y A245769 Cf. A000108, A006318. %K A245769 sign %O A245769 0,3 %A A245769 _Zhi-Wei Sun_, Aug 24 2014