cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.

This page as a plain text file.
%I A245778 #19 Sep 08 2022 08:46:09
%S A245778 1,672,4680,30240,435708,23569920,45532800,4138364160,14182439040,
%T A245778 53798734080,153003540480,403031236608,518666803200
%N A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.
%C A245778 Numbers n such that A245776(n) / A245777(n) =  (n / A000005(n) - A000203(n) / n) is an integer.
%C A245778 Sequence of integers k(n): 0, 25, 94, 311, 4031, 73652, 118571, …
%C A245778 Conjecture: subsequence of A216793.
%C A245778 Refactorable multiply-perfect numbers (A245782) are members of this sequence.
%C A245778 a(14) > 10^13. - _Giovanni Resta_, Jul 13 2015
%C A245778 The numbers 13661860101120 and 740344994887680 are also terms. - _Giovanni Resta_, Nov 14 2019
%F A245778 A245777(a(n)) = 1.
%e A245778 672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
%p A245778 select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n,integer), [$1..10^8]); # _Robert Israel_, Aug 03 2014
%o A245778 (Magma) [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
%o A245778 (PARI)
%o A245778 for(n=1,10^8,s=n/numdiv(n);t=sigma(n)/n;if(floor(s-t)==s-t,print1(n,", "))) \\ _Derek Orr_, Aug 01 2014
%Y A245778 Cf. A000005, A000203, A216793, A245776, A245777, A245779, A245782.
%K A245778 nonn,more
%O A245778 1,2
%A A245778 _Jaroslav Krizek_, Aug 01 2014
%E A245778 a(8)-a(13) from _Giovanni Resta_, Jul 13 2015