cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245789 Rectangular array A read by upward antidiagonals: A(k,n) = (2^k-1)^n, n,k >= 1.

Original entry on oeis.org

1, 1, 3, 1, 9, 7, 1, 27, 49, 15, 1, 81, 343, 225, 31, 1, 243, 2401, 3375, 961, 63, 1, 729, 16807, 50625, 29791, 3969, 127, 1, 2187, 117649, 759375, 923521, 250047, 16129, 255, 1, 6561, 823543, 11390625, 28629151, 15752961, 2048383, 65025, 511
Offset: 1

Views

Author

L. Edson Jeffery, Aug 22 2014

Keywords

Comments

A(k,n) is the number of sequences (X_1, X_2, ..., X_k) of subsets of the set {1, 2, ..., n} such that intersect_{j=1..k} X_j = null.

Examples

			Array A begins:
1      3         7           15              31                 63
1      9        49          225             961               3969
1     27       343         3375           29791             250047
1     81      2401        50625          923521           15752961
1    243     16807       759375        28629151          992436543
1    729    117649     11390625       887503681        62523502209
1   2187    823543    170859375     27512614111      3938980639167
1   6561   5764801   2562890625    852891037441    248155780267521
1  19683  40353607  38443359375  26439622160671  15633814156853823
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol. 1, Second edition, 2012, p. 14 (Example 1.1.16).

Crossrefs

Cf. A000225, A060867, A128831, etc. (rows 1-3).
Cf. A000012, A000244, A000420, etc. (columns 1-3).
Cf. A055601 (main diagonal).

Programs

  • Mathematica
    (* Array *)
    a[k_, n_] := (2^k - 1)^n; Grid[Table[a[k, n], {n, 12}, {k, 12}]]
    (* Array antidiagonals flattened *)
    Flatten[Table[(2^k - 1)^(n - k + 1), {n, 12}, {k, n}]]