This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245811 #26 Nov 30 2014 15:17:02 %S A245811 1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0, %T A245811 0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0, %U A245811 0,0,0,1,0,0,0,0,0,2 %N A245811 Number of primes of the form k^(n+1) - n^k for some k > 1. %C A245811 The search radius for k is effectively limited to k<=n+1 because the subtracted term n^k has exponential growth and the added term k^(n+1) only polynomial growth as k increases. - _R. J. Mathar_, Sep 07 2014 %H A245811 Juri-Stepan Gerasimov, <a href="/A245811/b245811.txt">Table of n, a(n) for n = 1..78</a> %p A245811 A245811 := proc(n) %p A245811 local a,k,p ; %p A245811 a := 0 ; %p A245811 for k from 2 to n+1 do %p A245811 p := k^(n+1)-n^k ; %p A245811 if isprime(p) then %p A245811 a := a+1 ; %p A245811 end if; %p A245811 end do: %p A245811 a ; %p A245811 end proc: %p A245811 seq(A245811(n),n=1..120) ; # _R. J. Mathar_, Sep 07 2014 %o A245811 (PARI) a(n) = if(n==1, return(1)); my(k=2, c=0, t); while((t=k^(n+1)-n^k)>0, k++; if(isprime(t), c++)); c %o A245811 vector(80, n, a(n)) \\ _Colin Barker_, Aug 26 2014 %Y A245811 Cf. A245809. %K A245811 nonn %O A245811 1,22 %A A245811 _Juri-Stepan Gerasimov_, Aug 22 2014