This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245842 #22 May 21 2016 03:04:27 %S A245842 0,1,0,0,1,0,1,2,1,0,0,2,2,1,0,1,2,5,2,1,0,0,3,4,5,2,1,0,1,4,7,8,5,2, %T A245842 1,0,0,4,8,10,8,5,2,1,0,1,4,12,14,15,8,5,2,1,0,0,5,12,19,18,15,8,5,2, %U A245842 1,0,1,6,18,24,27,24,15,8,5,2,1,0 %N A245842 Triangle T read by rows: T(n,k) = Total number of even parts in all partitions of n with exactly k parts, 1 <= k <= n. %C A245842 Column sequences appear to converge to A066897. %H A245842 Alois P. Heinz, <a href="/A245842/b245842.txt">Rows n = 0..140, flattened</a> %F A245842 T(n,k) + A245840(n,k) = A172467(n,k). %e A245842 Triangle begins %e A245842 0 %e A245842 1 0 %e A245842 0 1 0 %e A245842 1 2 1 0 %e A245842 0 2 2 1 0 %e A245842 1 2 5 2 1 0 %e A245842 0 3 4 5 2 1 0 %e A245842 1 4 7 8 5 2 1 0 %e A245842 0 4 8 10 8 5 2 1 0 %e A245842 1 4 12 14 15 8 5 2 1 0 %e A245842 0 5 12 19 18 15 8 5 2 1 0 %p A245842 b:= proc(n, i, k) option remember; `if`(n=0, [`if`(k=0, 1, 0), 0], %p A245842 `if`(i<1 or k=0, [0$2], ((f, g)-> f+g+[0, `if`(irem(i, 2)=0, %p A245842 g[1], 0)])(b(n, i-1, k), `if`(i>n, [0$2], b(n-i, i, k-1))))) %p A245842 end: %p A245842 T:= (n, k)-> b(n$2, k)[2]: %p A245842 seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Aug 04 2014 %t A245842 Grid[Table[Sum[Count[Flatten[IntegerPartitions[n, {k}]], i], {i, 2, n, 2}], {n, 11}, {k, n}]] %t A245842 (* second program: *) %t A245842 b[n_, i_, k_] := b[n, i, k] = If[n == 0, {If[k == 0, 1, 0], 0}, If[i < 1 || k == 0, {0, 0}, Function[{f, g}, f + g + {0, If[Mod[i, 2] == 0, g[[1]], 0]}][b[n, i-1, k], If[i > n, {0, 0}, b[n-i, i, k-1]]]]]; %t A245842 T[n_, k_] := b[n, n, k][[2]]; %t A245842 Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, May 21 2016, after _Alois P. Heinz_ *) %Y A245842 Cf. A245843 (partial sums of row entries). %Y A245842 Cf. A066898 (row sums), A172467. %Y A245842 Cf. A245840, A245841. %K A245842 nonn,tabl %O A245842 1,8 %A A245842 _L. Edson Jeffery_, Aug 03 2014