cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245851 T(n,k)=Number of length n 0..k arrays with new values introduced in order from both ends, and least squares fitting to a straight line with slope zero, with a single point taken as having zero slope.

This page as a plain text file.
%I A245851 #6 Jul 23 2025 11:30:16
%S A245851 1,1,1,1,1,2,1,1,2,2,1,1,2,2,4,1,1,2,2,5,4,1,1,2,2,5,5,8,1,1,2,2,5,5,
%T A245851 14,8,1,1,2,2,5,5,15,16,20,1,1,2,2,5,5,15,17,65,18,1,1,2,2,5,5,15,17,
%U A245851 77,77,52,1,1,2,2,5,5,15,17,78,101,356,48,1,1,2,2,5,5,15,17,78,102,551,448,152
%N A245851 T(n,k)=Number of length n 0..k arrays with new values introduced in order from both ends, and least squares fitting to a straight line with slope zero, with a single point taken as having zero slope.
%C A245851 Table starts
%C A245851 ....1......1.......1.......1.......1.......1.......1.......1.......1.......1
%C A245851 ....1......1.......1.......1.......1.......1.......1.......1.......1.......1
%C A245851 ....2......2.......2.......2.......2.......2.......2.......2.......2.......2
%C A245851 ....2......2.......2.......2.......2.......2.......2.......2.......2.......2
%C A245851 ....4......5.......5.......5.......5.......5.......5.......5.......5.......5
%C A245851 ....4......5.......5.......5.......5.......5.......5.......5.......5.......5
%C A245851 ....8.....14......15......15......15......15......15......15......15......15
%C A245851 ....8.....16......17......17......17......17......17......17......17......17
%C A245851 ...20.....65......77......78......78......78......78......78......78......78
%C A245851 ...18.....77.....101.....102.....102.....102.....102.....102.....102.....102
%C A245851 ...52....356.....551.....568.....569.....569.....569.....569.....569.....569
%C A245851 ...48....448.....861.....918.....919.....919.....919.....919.....919.....919
%C A245851 ..152...2279....5433....6115....6142....6143....6143....6143....6143....6143
%C A245851 ..138...2959....9055...11063...11170...11171...11171...11171...11171...11171
%C A245851 ..472..15572...61725...84095...86043...86081...86082...86082...86082...86082
%C A245851 ..428..20762..107467..167139..174957..175169..175170..175170..175170..175170
%C A245851 .1520.111641..758905.1377562.1495234.1500038.1500088.1500089.1500089.1500089
%C A245851 .1392.151205.1355573.2919818.3338570.3364000.3364342.3364343.3364343.3364343
%H A245851 R. H. Hardin, <a href="/A245851/b245851.txt">Table of n, a(n) for n = 1..1121</a>
%e A245851 Some solutions for n=12 k=4
%e A245851 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e A245851 ..0....1....1....1....1....1....1....0....1....1....0....1....1....1....1....0
%e A245851 ..1....1....0....0....2....1....2....1....0....2....1....2....0....2....0....1
%e A245851 ..2....0....0....0....1....2....3....1....2....1....1....2....0....2....2....1
%e A245851 ..0....2....1....1....1....2....1....2....3....3....2....3....0....1....2....1
%e A245851 ..1....3....2....2....3....3....3....0....2....1....3....2....1....1....0....0
%e A245851 ..0....2....0....1....2....0....0....1....3....2....2....3....2....2....0....0
%e A245851 ..2....0....0....2....3....3....2....1....2....1....0....1....1....3....2....1
%e A245851 ..1....0....1....0....0....2....3....1....1....2....2....3....1....2....2....1
%e A245851 ..1....2....0....1....2....1....2....0....1....2....0....2....0....1....0....1
%e A245851 ..0....1....1....0....1....1....1....1....1....1....1....1....0....1....1....0
%e A245851 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%Y A245851 Column 1 is A222955(n-2)
%K A245851 nonn,tabl
%O A245851 1,6
%A A245851 _R. H. Hardin_, Aug 04 2014