A245864 Number of length n+2 0..2 arrays with some pair in every consecutive three terms totalling exactly 2.
19, 45, 103, 239, 553, 1281, 2967, 6873, 15921, 36881, 85435, 197911, 458463, 1062035, 2460217, 5699123, 13202089, 30582803, 70845443, 164114349, 380172929, 880675315, 2040095313, 4725906149, 10947620333, 25360298571, 58747446847
Offset: 1
Keywords
Examples
Some solutions for n=10: ..1....2....1....2....0....1....0....1....0....0....2....0....0....2....0....0 ..1....1....1....2....0....1....2....1....2....1....2....1....0....1....1....1 ..1....1....1....0....2....1....1....1....0....1....0....2....2....0....1....1 ..1....0....0....2....1....1....1....1....2....2....2....0....0....2....2....0 ..1....2....2....0....1....1....1....2....2....0....1....2....2....2....0....1 ..0....2....0....1....2....2....0....1....0....1....1....0....1....0....2....2 ..2....0....1....1....0....1....2....0....2....1....0....2....1....2....2....0 ..2....1....1....1....2....0....0....2....2....1....1....1....1....2....0....1 ..0....2....2....1....0....1....0....1....0....1....1....1....0....0....0....1 ..2....1....1....0....1....2....2....1....1....1....1....0....1....0....2....0 ..2....0....0....1....1....1....0....2....2....2....1....2....1....2....2....1 ..0....1....1....1....1....0....2....1....0....1....1....0....2....0....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A245869.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5).
Empirical g.f.: x*(19 + 7*x - 6*x^2 - 12*x^3 - 9*x^4) / ((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)). - Colin Barker, Nov 03 2018