A245868 Number of length n+2 0..7 arrays with some pair in every consecutive three terms totalling exactly 7.
168, 712, 2368, 8840, 31176, 113024, 404264, 1455496, 5223552, 18775816, 67437448, 242306240, 870461352, 3127322696, 11235107264, 40363689352, 145010699592, 520968428032, 1871637364264, 6724074597128, 24157004951808, 86786820122120
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....6....7....0....7....3....6....4....0....2....6....1....6....5....0....2 ..2....4....6....0....2....6....3....5....7....6....0....7....6....6....7....5 ..3....3....1....7....0....1....4....2....6....1....1....0....1....2....6....6 ..5....6....4....4....5....6....0....6....1....1....6....1....1....1....0....1 ..2....1....3....0....2....5....7....5....0....6....7....6....6....6....7....7 ..4....6....4....3....4....2....2....2....7....1....0....6....7....7....2....6 ..5....3....3....4....3....5....5....0....5....1....7....1....0....0....5....1 ..2....4....2....3....2....4....6....5....2....6....0....2....2....6....3....7
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted derivation of recurrence
Crossrefs
Column 7 of A245869.
Formula
Empirical: a(n) = 2*a(n-1) + 6*a(n-2) - a(n-3).
Empirical g.f.: 8*x*(21 + 47*x - 8*x^2) / (1 - 2*x - 6*x^2 + x^3). - Colin Barker, Nov 04 2018
Empirical recurrence verified: see link. - Robert Israel, May 13 2020