A245875 Number of length 6+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.
68, 1281, 4624, 13961, 30900, 63241, 113024, 193137, 305860, 470321, 688848, 987961, 1369844, 1869561, 2488960, 3272801, 4222404, 5393377, 6786320, 8468841, 10440628, 12782441, 15492864, 18666961, 22302020, 26508561, 31282384, 36750617
Offset: 1
Keywords
Examples
Some solutions for n=8: ..2....4....4....0....0....4....3....3....1....0....1....2....0....3....0....3 ..6....4....1....8....8....4....6....6....7....8....8....2....7....7....8....7 ..2....4....7....0....7....7....2....5....1....1....0....6....1....1....8....1 ..2....8....4....6....1....1....3....3....4....7....2....2....3....1....0....0 ..6....0....4....2....6....7....5....8....4....6....6....3....5....7....6....8 ..5....3....4....6....2....1....5....0....5....1....3....5....3....3....2....8 ..2....5....7....3....1....3....3....8....4....7....5....5....5....5....5....0 ..6....4....1....2....6....5....4....0....3....4....7....3....3....5....3....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A245869.
Formula
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(68 + 1077*x + 781*x^2 + 633*x^3 - 1143*x^4 - 561*x^5 + 103*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3).
a(n) = 1 + 22*n + 31*n^2 + 77*n^3 + 29*n^4 + n^5 for n even.
a(n) = -5 - 44*n + 10*n^2 + 77*n^3 + 29*n^4 + n^5 for n odd.
(End)