A245876 Number of length 7+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.
110, 2967, 12100, 40901, 97602, 214315, 404264, 727017, 1200310, 1920671, 2909100, 4309357, 6143690, 8614131, 11741392, 15797585, 20798334, 27098407, 34704020, 44065941, 55175890, 68594747, 84293880, 102959161, 124534982, 149847855
Offset: 1
Keywords
Examples
Some solutions for n=5: ..2....4....0....4....0....0....2....3....4....2....3....3....4....1....1....5 ..2....1....5....3....2....3....4....0....1....0....3....5....3....3....0....0 ..3....2....1....2....3....2....1....5....5....5....2....0....2....2....4....5 ..2....3....4....3....0....5....3....0....0....3....3....1....5....5....5....2 ..3....3....1....2....5....3....4....0....4....2....0....4....3....3....0....3 ..3....2....2....4....3....2....1....5....1....0....5....2....2....2....5....5 ..2....2....3....1....2....2....4....3....4....3....2....1....2....3....4....2 ..3....3....2....0....1....3....2....2....2....2....0....3....3....2....1....0 ..1....2....4....4....3....2....1....0....3....4....3....2....5....4....5....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 7 of A245869.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(110 + 2747*x + 5836*x^2 + 8680*x^3 + 3456*x^4 - 2178*x^5 - 1148*x^6 - 224*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 + 37*n + 43*n^2 + 126*n^3 + 89*n^4 + 9*n^5 for n even.
a(n) = 7 - 76*n - 41*n^2 + 122*n^3 + 89*n^4 + 9*n^5 for n odd.
(End)