This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245878 #15 Nov 26 2024 02:17:11 %S A245878 67,607,6977,68897,69067,69997,79867,80677,88867,97967,609607,660067, %T A245878 669667,676987,678767,697687,707677,766867,777677,786697,866087, %U A245878 879667,880667,886987,899687,906707,909767,966997,990967,6069977,6096907,6097997,6678877 %N A245878 Primes p such that p - d and p + d are also primes, where d is the smallest nonzero digit of p. %C A245878 Intersection of A245744 and A245745. %C A245878 The smallest nonzero digit of a(n) is 6, and the least significant digit of a(n) is 7. %H A245878 Robert Israel, <a href="/A245878/b245878.txt">Table of n, a(n) for n = 1..10000</a> %e A245878 The prime 607 is in the sequence because 607 - 6 = 601 and 607 + 6 = 613 are both primes. %p A245878 f:= proc(x) local L,i,y; %p A245878 L:= subs(1=6,2=7,3=8,4=9, convert(x,base,5)); %p A245878 if not member(6,L) then return NULL fi; %p A245878 y:= add(L[i]*10^(i-1),i=1..nops(L)); %p A245878 if isprime(y) and isprime(y-6) and isprime(y+6) then y else NULL fi %p A245878 end proc: %p A245878 map(f, [seq(2+5*k,k=1..10000)]); # _Robert Israel_, Nov 25 2024 %t A245878 pdQ[p_]:=Module[{c=Min[DeleteCases[IntegerDigits[p],0]]},AllTrue[p+{c,-c},PrimeQ]]; Select[Prime[Range[460000]],pdQ] (* _Harvey P. Dale_, Feb 26 2023 *) %o A245878 (PARI) s=[]; forprime(p=2, 7000000, v=vecsort(digits(p),,8); d=v[1+!v[1]]; if(isprime(p-d) && isprime(p+d), s=concat(s, p))); s %o A245878 (Python) %o A245878 from sympy import isprime %o A245878 from sympy import prime %o A245878 for n in range(1, 10**6): %o A245878 s=prime(n) %o A245878 lst = [] %o A245878 for i in str(s): %o A245878 if i != '0': %o A245878 lst.append(int(i)) %o A245878 if isprime(s+min(lst)) and isprime(s-min(lst)): %o A245878 print(s, end=', ') %o A245878 # _Derek Orr_, Aug 13 2014 %Y A245878 Cf. A245742, A245743, A245744, A245745, A245877. %K A245878 nonn,base,look %O A245878 1,1 %A A245878 _Colin Barker_, Aug 05 2014