A245920 Limit-reverse of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0
Keywords
Examples
S = infinite Fibonacci word A014675, B = (s(0)); that is, (m,k) = (0,0); S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...) B'(0) = (2) B'(1) = (2,1) B'(2) = (2,1,2) B'(3) = (2,1,2,1) B'(4) = (2,1,2,1,2) B'(5) = (2,1,2,1,2,2) S* = (2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...), with index sequence (0,2,5,7,15,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]] ; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]]
Comments