This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245922 #8 Sep 26 2016 21:41:45 %S A245922 2,3,2,8,5,8,8,5,13,21,21,13,21,13,21,21,13,21,21,13,21,34,21,34,34, %T A245922 21,34,21,34,34,21,34,21,34,34,21,34,34,21,34,21,34,34,55,34,55,55,34, %U A245922 55,55,34,55,34,55,55,34,55,55,34,55,34,55,55,34,55,34,55 %N A245922 First differences of A245921. %C A245922 See Comments at A245921. It appears that every term is a Fibonacci number (A000045). %e A245922 (See A245921.) %t A245922 z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind] (*finds the position of the SECOND appearance of seqtofind. Example: seqPosition2[{1,2,3,4,2,3},{2}] = 5*) %t A245922 A014675 = Nest[Flatten[# /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 25]; ans = Join[{A014675[[p[0] = pos = seqPosition2[A014675, #] - 1]]}, #] &[{A014675[[1]]}]; %t A245922 cfs = Table[A014675 = Drop[A014675, pos - 1]; ans = Join[{A014675[[p[n] = pos = seqPosition2[A014675, #] - 1]]}, #] &[ans], {n, z}]; %t A245922 q = -1+Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245921 *) %t A245922 q1 = Differences[q] (* A245922 *) %Y A245922 Cf. A245920, A245921. %K A245922 nonn %O A245922 1,1 %A A245922 _Clark Kimberling_ and _Peter J. C. Moses_, Aug 07 2014