This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245932 #13 Sep 30 2019 02:44:24 %S A245932 1,1,1,9,41,121,281,673,2017,6721,21121,61065,171497,495769,1488761, %T A245932 4509793,13468897,39688609,116869153,346788009,1035199817,3090560089, %U A245932 9200749433,27347417281,81352371841,242426988961,723125351521,2156829477609,6430792717001,19174372701241,57194628447641 %N A245932 G.f.: G'(x) / G(x) where G(x) = 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ) is the g.f. of A245931. %C A245932 Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean. %C A245932 Limit a(n+1)/a(n) = 3. %H A245932 Paul D. Hanna, <a href="/A245932/b245932.txt">Table of n, a(n) for n = 0..1000</a> %F A245932 G.f.: A(x) = 1 + x + x^2 + 9*x^3 + 41*x^4 + 121*x^5 + 281*x^6 + 673*x^7 +... %F A245932 As a logarithmic expansion, %F A245932 L(x) = x + x^2/2 + x^3/3 + 9*x^4/4 + 41*x^5/5 + 121*x^6/6 + 281*x^7/7 + 673*x^8/8 + 2017*x^9/9 + 6721*x^10/10 +... %F A245932 where %F A245932 exp(L(x)) = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 157*x^8 +... %F A245932 equals 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ). %F A245932 a(n) ~ 3^(n+1) / (2*log(n)) * (1 + (log(3) - 3*log(2) - gamma) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 30 2019 %t A245932 Simplify[CoefficientList[Series[D[Log[Sqrt[(2*EllipticK[1 - (1 - 3*x)^4/(1 + x)^4])/Pi] / (1 + x)], x], {x, 0, 30}], x]] (* _Vaclav Kotesovec_, Sep 27 2019 *) %o A245932 (PARI) /* As the logarithmic derivative of A245931: */ %o A245932 {a(n)=local(G=1); G = 1 / sqrt( agm((1-3*x)^2, (1+x)^2 +x^2*O(x^n)) ); polcoeff(G'/G,n)} %o A245932 for(n=0,35,print1(a(n),", ")) %o A245932 (PARI) /* As the logarithm of g.f. of A245931 (offset = 1): */ %o A245932 {a(n)=local(A=1); A = -log( agm((1-3*x)^2, (1+x)^2 +x*O(x^n)) )/2; n*polcoeff(A,n)} %o A245932 for(n=1,35,print1(a(n),", ")) %Y A245932 Cf. A245931. %K A245932 nonn %O A245932 0,4 %A A245932 _Paul D. Hanna_, Aug 14 2014