A245935 First differences of A245934; see Comments.
2, 2, 3, 5, 7, 5, 7, 5, 5, 12, 12, 5, 12, 12, 12, 17, 12, 17, 12, 12, 17, 12, 17, 12, 17, 41, 29, 41, 29, 29, 41, 29, 41, 29, 41, 29, 29, 41, 29, 41, 29, 29, 41, 29, 41, 29, 41, 29, 29, 41, 29, 41, 29, 29, 70, 70, 29, 70, 70, 70, 29, 70, 70, 29, 70, 70, 70
Offset: 1
Keywords
Examples
S = A006337 (the Beatty sequence of sqrt(2)), re-indexed to start with s(0) = 1, with B = (s(0)); that is, (m,k) = (0,0) S = (1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,2,1,1,2,1,2,1,1,2,...) B'(0) = (1) B'(1) = (2,1) B'(2) = (1,2,1) B'(3) = (1,2,1,1) B'(4) = (1,2,1,1,2) B'(5) = (1,2,1,1,2,1) S* = (1,2,1,1,2,1,2,1,1,2,1,2,1,2,1,1,2,1,...), with index sequence (1,3,5,8,13,20,25,32,37,...), with difference sequence (2,2,3,5,7,5,7,5,5,12,12,...).
Programs
-
Mathematica
z = 140; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = Sqrt[2]; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; q = Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245934 *) q1 = Differences[q] (* A245935 *)
Comments