A245947 Number of length n+3 0..5 arrays with some pair in every consecutive four terms totalling exactly 5.
834, 3966, 18384, 82968, 381222, 1744494, 7972932, 36489120, 166920402, 763564758, 3493201536, 15980209872, 73104350502, 334430964150, 1529917916484, 6998905422984, 32017855579074, 146471872453902, 670063969035792
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....5....4....3....1....0....1....3....5....0....3....4....5....3....3....0 ..4....1....1....2....2....4....4....5....0....2....0....5....0....3....3....3 ..5....5....1....2....4....0....5....1....2....3....1....2....4....3....5....2 ..3....0....0....5....5....5....4....4....2....1....4....0....4....2....0....1 ..0....4....4....3....3....3....0....3....5....2....3....1....1....5....5....1 ..0....1....3....1....2....1....0....0....0....1....2....4....4....1....5....4 ..2....3....1....0....0....0....5....2....3....4....5....3....4....0....0....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A245950.
Formula
Empirical: a(n) = 3*a(n-1) + 5*a(n-2) + 13*a(n-3) - 13*a(n-4) - a(n-5) - 3*a(n-6) + a(n-7).
Empirical g.f.: 6*x*(139 + 244*x + 386*x^2 - 476*x^3 - 53*x^4 - 102*x^5 + 36*x^6) / (1 - 3*x - 5*x^2 - 13*x^3 + 13*x^4 + x^5 + 3*x^6 - x^7). - Colin Barker, Nov 05 2018