A245948 Number of length n+3 0..6 arrays with some pair in every consecutive four terms totalling exactly 6.
1435, 7669, 39721, 199141, 1021225, 5208673, 26526337, 135336793, 690045061, 3518298991, 17940920173, 91480646389, 466463146399, 2378531818147, 12128251046821, 61842638080231, 315339231002215, 1607932492222021
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3....4....0....4....0....1....3....4....4....1....0....4....4....3....1....4 ..6....5....5....6....2....4....2....5....3....1....1....1....3....6....4....1 ..1....4....6....1....4....2....3....1....2....4....0....5....3....5....6....1 ..0....1....5....0....5....5....4....5....4....2....6....6....3....1....0....5 ..6....4....1....6....6....0....2....6....5....4....2....1....3....0....1....3 ..6....5....4....2....0....6....2....2....5....0....4....2....1....0....0....1 ..1....2....5....1....4....2....1....4....1....4....1....0....2....6....5....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A245950.
Formula
Empirical: a(n) = 4*a(n-1) +8*a(n-2) +2*a(n-3) -39*a(n-4) -139*a(n-5) -175*a(n-6) -179*a(n-7) +980*a(n-8) +1638*a(n-9) -1266*a(n-10) -210*a(n-11) -352*a(n-12) +123*a(n-13) +24*a(n-14) +19*a(n-15) -5*a(n-16).
Comments