A245949 Number of length n+3 0..7 arrays with some pair in every consecutive four terms totalling exactly 7.
2216, 13064, 73728, 397504, 2217096, 12257032, 67596992, 373997376, 2066660136, 11420014856, 63122102528, 348845096320, 1927940409608, 10655229621512, 58887811241024, 325454196462720, 1798683415254952, 9940745874984456
Offset: 1
Keywords
Examples
Some solutions for n=3: ..5....4....0....5....0....4....3....5....6....2....4....6....5....3....7....3 ..3....1....1....2....2....1....2....4....1....4....3....2....0....4....2....5 ..2....6....7....3....3....3....6....1....2....7....0....3....7....1....4....3 ..5....5....2....3....5....5....1....6....5....0....7....1....6....0....5....2 ..4....0....5....4....3....4....7....3....5....2....6....4....5....7....3....4 ..0....1....6....6....2....3....1....2....6....4....6....7....0....4....7....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A245950.
Formula
Empirical: a(n) = 3*a(n-1) + 9*a(n-2) + 31*a(n-3) - 19*a(n-4) - 3*a(n-5) - 5*a(n-6) + a(n-7).
Empirical g.f.: 8*x*(277 + 802*x + 1824*x^2 - 1244*x^3 - 231*x^4 - 312*x^5 + 64*x^6) / (1 - 3*x - 9*x^2 - 31*x^3 + 19*x^4 + 3*x^5 + 5*x^6 - x^7). - Colin Barker, Nov 05 2018