cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245952 Number of length 2+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.

Original entry on oeis.org

26, 197, 676, 1889, 3966, 7669, 13064, 21281, 32290, 47621, 67116, 92737, 124166, 163829, 211216, 269249, 337194, 418501, 512180, 622241, 747406, 892277, 1055256, 1241569, 1449266, 1684229, 1944124, 2235521, 2555670, 2911861, 3300896, 3730817
Offset: 1

Views

Author

R. H. Hardin, Aug 08 2014

Keywords

Examples

			Some solutions for n=10:
..3....1....2....0....6....0....7....8....4...10....2....9....9....3....0....3
..9....1....2....3....6....8....0....5....9....5....6....3....2....0....1....2
..1....9...10...10....2....2...10....5....1....6....1....7....0...10....9....8
..1....6....0....0....4....0....9....0....6....5....4....2....8....6....8...10
..1....8...10....2...10....9....6....6....1....5....7....4....1....3...10....2
		

Crossrefs

Row 2 of A245950.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(26 + 145*x + 230*x^2 + 299*x^3 + 18*x^4 - 141*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 + 12*n - 5*n^2 + 18*n^3 + 3*n^4 for n even.
a(n) = 16 - 5*n - 6*n^2 + 18*n^3 + 3*n^4 for n odd.
(End)