A245952 Number of length 2+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.
26, 197, 676, 1889, 3966, 7669, 13064, 21281, 32290, 47621, 67116, 92737, 124166, 163829, 211216, 269249, 337194, 418501, 512180, 622241, 747406, 892277, 1055256, 1241569, 1449266, 1684229, 1944124, 2235521, 2555670, 2911861, 3300896, 3730817
Offset: 1
Keywords
Examples
Some solutions for n=10: ..3....1....2....0....6....0....7....8....4...10....2....9....9....3....0....3 ..9....1....2....3....6....8....0....5....9....5....6....3....2....0....1....2 ..1....9...10...10....2....2...10....5....1....6....1....7....0...10....9....8 ..1....6....0....0....4....0....9....0....6....5....4....2....8....6....8...10 ..1....8...10....2...10....9....6....6....1....5....7....4....1....3...10....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A245950.
Formula
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(26 + 145*x + 230*x^2 + 299*x^3 + 18*x^4 - 141*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 + 12*n - 5*n^2 + 18*n^3 + 3*n^4 for n even.
a(n) = 16 - 5*n - 6*n^2 + 18*n^3 + 3*n^4 for n odd.
(End)