A245954 Number of length 4+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.
88, 1501, 7744, 31465, 82968, 199141, 397504, 754321, 1292440, 2144941, 3335808, 5074681, 7380184, 10560565, 14620288, 19990561, 26650584, 35181181, 45522880, 58435081, 73803928, 92598661, 114633024, 141119665, 171779608, 208104781
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....1....1....4....4....1....1....4....4....3....0....3 ..6....6....5....5....5....4....3....1....6....0....0....5....3....6....0....2 ..6....5....2....1....6....2....1....5....5....6....6....1....0....5....2....4 ..3....1....4....4....0....2....5....5....0....0....0....5....6....1....4....1 ..3....0....5....2....0....1....5....6....6....0....6....3....5....5....3....4 ..6....1....1....1....3....4....6....0....5....5....4....6....1....5....2....2 ..2....5....2....5....6....4....0....1....2....1....0....0....2....5....3....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A245950
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(88 + 1325*x + 4478*x^2 + 12178*x^3 + 8990*x^4 + 2708*x^5 - 310*x^6 - 658*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 + 34*n + 6*n^2 - 16*n^3 + 66*n^4 + 15*n^5 for n even.
a(n) = 58 + 57*n - 80*n^2 - 28*n^3 + 66*n^4 + 15*n^5 for n odd.
(End)