This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245958 #14 Dec 16 2021 16:51:11 %S A245958 1,1,1,4,2,1,27,11,5,3,256,88,36,18,9,3125,925,335,141,57,21,46656, %T A245958 12096,3912,1440,516,186,81,823543,189679,55377,18279,6003,2079,837, %U A245958 351,16777216,3473408,924160,277824,84624,27672,10116,3690,1233 %N A245958 Number T(n,k) of endofunctions f on [n] satisfying f^3(i) = i for all i in [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A245958 Alois P. Heinz, <a href="/A245958/b245958.txt">Rows n = 0..140, flattened</a> %e A245958 Triangle T(n,k) begins: %e A245958 0 : 1; %e A245958 1 : 1, 1; %e A245958 2 : 4, 2, 1; %e A245958 3 : 27, 11, 5, 3; %e A245958 4 : 256, 88, 36, 18, 9; %e A245958 5 : 3125, 925, 335, 141, 57, 21; %e A245958 6 : 46656, 12096, 3912, 1440, 516, 186, 81; %e A245958 7 : 823543, 189679, 55377, 18279, 6003, 2079, 837, 351; %e A245958 ... %p A245958 with(combinat): M:=multinomial: %p A245958 T:= proc(n, k) local l, g; l, g:= [1, 3], %p A245958 proc(k, m, i, t) option remember; local d, j; d:= l[i]; %p A245958 `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!* %p A245958 (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, %p A245958 `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), %p A245958 `if`(t=0, [][], m/t)))) %p A245958 end; g(k, n-k, nops(l), 0) %p A245958 end: %p A245958 seq(seq(T(n, k), k=0..n), n=0..12); %t A245958 M[n_, m_, k_List] := n!/Times @@ (Join[{m}, k]!); %t A245958 T[0, 0] = 1; T[n_, k_] := T[n, k] = Module[{l = {1, 3}, g}, g[k0_, m_, {i_, t_}] := g[k0, m, i, t]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[ {d}, d = l[[i]]; If[i == 1, n^m, Sum[M[k0, k0 - (d-t)*j, Table[(d-t), {j}]]/j!*(d-1)!^j*M[m, m - t*j, Table[t, {j}]]*g[k0 - (d-t)*j, m - t*j, If[d-t == 1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]]; %t A245958 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2019, after _Alois P. Heinz_ *) %Y A245958 Column k=0 gives A000312. %Y A245958 T(2n,n) gives A245959. %Y A245958 Main diagonal gives A001470. %Y A245958 Cf. A241015. %K A245958 nonn,tabl %O A245958 0,4 %A A245958 _Alois P. Heinz_, Aug 08 2014