This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245971 #18 Mar 16 2020 18:24:53 %S A245971 0,0,1,0,1,4,4,0,4,6,4,4,9,4,1,0,1,4,9,16,4,4,3,16,21,22,13,4,24,16,4, %T A245971 0,4,18,11,4,34,28,22,16,37,4,41,4,31,26,17,16,11,46,1,48,47,40,26,32, %U A245971 28,24,45,16,57,4,4,0,61,4,55,52,49,46,50,40,37 %N A245971 Tower of 4s mod n. %C A245971 a(n) = (4^(4^(4^(4^(4^ ... ))))) mod n, provided sufficient 4s are in the tower such that adding more doesn't affect the value of a(n). %H A245971 Wayne VanWeerthuizen, <a href="/A245971/b245971.txt">Table of n, a(n) for n = 1..10000</a> %o A245971 (Sage) %o A245971 def tower4mod(n): %o A245971 if n <= 10: %o A245971 return 256%n %o A245971 else: %o A245971 ep = euler_phi(n) %o A245971 return power_mod(4,ep+tower4mod(ep),n) %o A245971 [tower4mod(n) for n in range(1, 30)] %o A245971 (Haskell) %o A245971 import Math.NumberTheory.Moduli (powerMod) %o A245971 a245971 n = powerMod 4 (phi + a245971 phi) n %o A245971 where phi = a000010 n %o A245971 -- _Reinhard Zumkeller_, Feb 01 2015 %Y A245971 Cf. A240162, A245970, A245972, A245973, A245974. %Y A245971 Cf. A000010, A000302. %K A245971 nonn,easy %O A245971 1,6 %A A245971 _Wayne VanWeerthuizen_, Aug 08 2014